

Fantech Rectangular Attenuators are available in different models to suit a variety of applications and duct dimensions. They can be made in different widths and heights, and each model number denotes a different percentage open area and length combination.

The rectangular attenuators are available in the following models:

RT Series - Rectangular Attenuators

The RT series is ideal for general HVAC purposes and suitable for industrial applications. These attenuators deliver good acoustic attenuation properties across a broad spectrum of sound frequencies while maintaining low air flow pressure drops through the attenuator. This range is suitable for dry applications. Refer to the RT.QS series for applications where moisture may be present in the air stream.

RT..QS Series - Rectangular Q-Seal Attenuators

The Rectangular Q-Seal attenuator includes the qualities of the RT series attenuator and incorporates an infill system fully wrapped in an impermeable plastic membrane/film. The RT..QS Series is suitable in medical and clean room applications and any sensitive ventilation systems requiring a wrapped infill material to prevent the possibility of insulation fibre ingress into the airstream. They are also suitable where the insulation medium is directly exposed to weather, grease, liquid or dusts. Attenuators of this model type may also be cleaned periodically by low-pressure steam or pressure washer equipment.

R3T Series - Rectangular Thick Wall Attenuators

The R3T series of attenuators is suitable for HVAC purposes and ideal for industrial applications. They have wider splitters providing better low-frequency attenuation than the standard RT series. This makes them more suitable for the control of low-frequency noise emissions such as those from generator sets and pump systems.

Sectional Representation

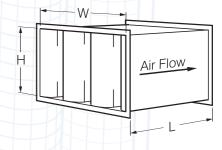
RT Series Standard splitters

RT..QS Series
Splitters with infill
wrapped in
impermeable film

R3T Series Thicker splitters

HOW TO ORDER

Length code A - 600mm D - 1500m


D - 1500mm G - 2400mm

QS - with Q-seal (Default is standard construction)

Casing width in cm.

Casing height in cm.

DIMENSIONS

22 - 225mm

25 - 250mm

30 - 300mm

RECTANGULAR DUCT ATTENUATORS

CONSTRUCTION

- Casing and splitters made from Z275 coated galvanized steel.
- Infill from bio-soluble acoustic grade glasswool or mineral wool, encased behind finely perforated galvanized steel.
 Infill is hygroscopic and incombustible.
- RT and R3T Series have a fiberglass membrane between infill and perforated steel layer to minimize fibre egress from the infill into the air stream.
- Q-Seal (QS) variants have infill material fully wrapped in liquid impermeable Melinex® PET Plastic Film.
- Standard construction rated to duct pressures between -500Pa and +1kPa relative to atmosphere.

SECTIONAL SIZING AND JOINING FLANGE INFORMATION

- Flanges 35mm TDF or compatible up to a maximum height or width of 1200mm. Above these sizes 40mm or 50mm steel angle section frames used, supplied undrilled.
- Matching flanges for attaching to accompanying ductwork can also be supplied.
- Rectangular attenuators will typically be made in a single piece up to a maximum of 2250mm in width, length or height. Above this dimension attenuators will be split into multiple sections in the dimension(s) exceeding the 2250mm limit noted.
- As a special request, attenuators may be divided into smaller sized sections than standard to fit through small spaces, before they are reassembled as a single unit on site.

CUSTOMISED ATTENUATOR OPTIONS

The following are available as special options when ordering Fantech rectangular attenuators:

- Different materials of construction such as Stainless Steel Grades 304 and 316.
- Paints / protective coatings such as epoxy paint, Chlorinated Rubber etc.
- Flange material/dimensions profile can be specified e.g. Ductmate, TDF, Plain Steel Angle.
- Access doors for easy cleaning (e.g. in Kitchen Exhaust Applications).

SUGGESTED SPECIFICATION

Rectangular attenuators shall be of the RT, R3T or RT.QS Series as designed and manufactured by Fantech Pty. Ltd. and shall have the dimensions, acoustic attenuator insertion losses and pressure losses as scheduled. Acoustic Attenuator Insertion Loss data for the attenuators to be derived from tests in accordance to BS4718:1971.

The casing shall be manufactured from forming grade zinc-coated mild steel sheet with Pittsburgh corner seams. The infill material shall be either rockwool or fibreglass as specified by the manufacturer. The infill material shall be covered with a membrane to prevent erosion of the fibres, then encased in galvanised perforated sheet metal. Where attenuators are exposed to the weather they shall be of the RT..QS Series where all infill materials shall be lined with an impervious film to prevent the ingress of moisture.

The infill material when tested in accordance with AS1530.3:1989 shall have the following indices:-

Ignitability 0 Spread of flame 0 Heat evolved 0 Smoke developed 0

RECTANGULAR DUCT ATTENUATORS

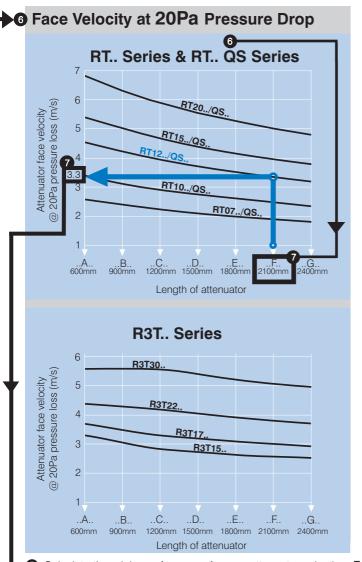
Example: How to select a rectangular attenuator

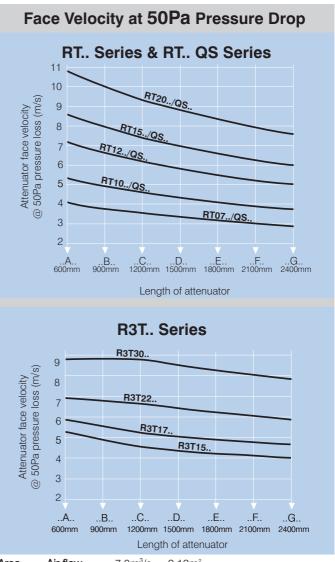
For this scenario, noise from a car park exhaust fan results in a noise level of 83dB(A) in the car park it ventilates. The exhaust air volume passing through the fan is 7m³/s. The user would like to have a target noise level in the carpark of 60dB(A). Also, the attenuator can be no longer than 2200mm long, is not exposed to the weather, and can have no more than 20Pa of air flow resistance through it to avoid affecting the fan selection.

- 1 Select the appropriate noise reduction data column. Exhaust fan noise would be classified as 'General Fan noise'.
- 2 Choose the attenuator series required. Both the RT and R3T models would be appropriate as the internals of the attenuator are not exposed to the weather.
- 3 The noise reduction required is found by subtracting the target noise level from the current noise level. 83dB(A) Current noise level 60dB(A) Target noise level = 23dB(A) reduction required.

Under the "General fan noise dB(A) reduction" columns for the attenuator series (RT & R3T) chosen earlier, follow the line sequence (until the reduction noise (23 dB(A)) is found or marginally exceeds this number.

2100

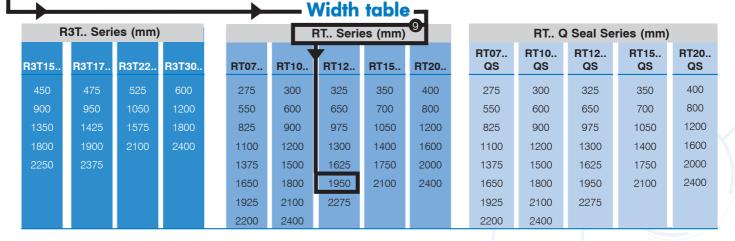

4 To achieve a 23 dB(A) noise reduction using the RT series, the following length and % open area combinations can be used; 2100mm/37%, 1800mm/33% and 1500mm/26%. For our example going forward, we will use the 2100mm long, 37% open area option. The selection closest to the top is normally the best from a price perspective. To evaluate other options, repeat the steps from 4 onwards.


ACOUSTIC PERFORMANCE		General fan noise dB(A) reduction				Low Frequency biased noise dB(A) reduction				Product Codes			
		0										1	
DATA													
	0/												
	% open	DOT	PT	DT 00		DOT	RT	DT 00		DoT	DT	DT 00	
Length mm	area	R3T Series	RT Series	RTQS Series		R3T Series	Series	RTQS Series		R3T Series	RT Series	RTQS Series	
	26	Conics	4 32	28		OCITOS	24	19		CCIICS	RT07G	RT07GQS	
	33	25	28	24	-	22	19	17		R3T15G	RT10G	RT10GQS	
2400	37	22	24	22	-	20	17	16		R3T17G	RT12G	RT12GQS	
	43	18	22	19		17	16	15		R3T22G	RT15G	RT15GQS	
	50	14	19	17		15	14	13		R3T30G	RT20G	RT20GQS	
	26		30	26		0	21	18			RT07F	RT07FQS	
	33	24	. ∕₹26	23		19	17	16		R3T15F	RT10F	RT10FQS	
2100	37	21	3 23	20		18	16	15	П		5) RT12F	RT12FQS	
	43	17	21	18	-	16	15	14		R3T22F	RT15F	RT15FQS	
	50	12/	1 7	15		14	13	12		R3T30F	RT20F	RT20FQS	
	26		27	24			18	16			RT07E	RT07EQS	
	33	22	/124	21		17	15	14		R3T15E	RT10E	RT10EQS	
1800	37	19	21	19		16	14	13		R3T17E	RT12E	RT12EQS	
	43	16	19	16		14	13	12		R3T22E	RT15E	RT15EQS	
	50	12	1 6	14		12	11	11		R3T30E	RT20E	RT20EQS	
	26	L	4 25	22			15	14			RT07D	RT07DQS	
	33	20	/1 22	19		15	13	12		R3T15D	RT10D	RT10DQS	
1500	37	17	20	16		14	12	11		R3T17D	RT12D	RT12DQS	
	43	14	18	15		12	11	11		R3T22D	RT15D	RT15DQS	
	50	11,	J 14	12		10	10	9		R3T30D	RT20D	RT20DQS	
	26	F	4 22	19			12	11			RT07C	RT07CQS	
	33	17	/ 19	17		12	11	10		R3T15C	RT10C	RT10CQS	
1200	37	15	17	14		11	10	9		R3T17C	RT12C	RT12CQS	
	43	12	16	13		10	9	9		R3T22C	RT15C	RT15CQS	
	50	9,	J 13	11		9	8	8		R3T30C	RT20C	RT20CQS	
	26		4 18	15			10	8			RT07B	RT07BQS	
	33	14	, 16	13		10	8	7		R3T15B	RT10B	RT10BQS	
900	37	V 12	V 14	11		9	8	6		R3T17B	RT12B	RT12BQS	
	43	10 /	13	10		8	7	6		R3T22B	RT15B	RT15BQS	
	50	L7_	J 10	8		7	6	5		R3T30B	RT20B	RT20BQS	
	26	F	1 4	10			6	4			RT07A	RT07AQS	
	33	10	/ 11	9		7	5	4		R3T15A	RT10A	RT10AQS	
600	37	y 9	1 0	8		6	5	4		R3T17A	RT12A	RT12AQS	
	43	17	9	7		6	5	3		R3T22A	RT15A	RT15AQS	
	50	6,	7	6	Ļ	5	4	3		R3T30A	RT20A	RT20AQS	

Acoustic performance tests to ISO7235-2003 that have been simplified to single digit noise reduction levels are shown in table above. Detailed attenuator insertion loss (SIL) spectrums based on testing to the BS4718-1971 Standard can be obtained using the Fans by Fantech Product Selection Program.

RECTANGULAR DUCT ATTENUATORS

- 5 Select the product code which is aligned with the 2100mm long, 37% open, 23 dB(A). In this case the product code is RT12F.
- 6 Refer to the correct pressure loss (20Pa) graph and attenuator series (RT Series for the RT12F model)
- 7 Draw a vertical line on the graph that corresponds to the length of the attenuator model chosen at step 4 (i.e. 2100mm long or 'F' length code). The face velocity on the RT12../QS curve that corresponds to the model is 3.3m/s



- 8 Calculate the minimum face area for your attenuator selection; Face Area = Air flow Face Velocity = 7.0m³/s = 2.12m = 3.3m/s
- To calculate the width of a rectangular attenuator of unknown dimensions, use the formula;

Width = $\sqrt{\text{Face Area x Aspect Ratio}} = \sqrt{2.12 \text{m}^2 \times 1.5} = 1.78 \text{m}$

*Common aspect ratios vary between 0.5 and 3.0. When a silencer width is larger than its height aspect ratio >1.0. An aspect ratio of 1.5 is a good default. In the width table below, pick the closest width available for a RT12.. series attenuator. In this case, 1.95m (1950mm) is the selected width.

To calculate the height of the attenuator, use the formula; Height = Face Area $= 2.12m^2 = 1.09m$ The final model code of the attenuator selected is RT12F-195-109

